arc_mobility ============ .. py:module:: arc_mobility .. autoapi-nested-parse:: Arc mobility models for reignition point movement. Classes ------- .. autoapisummary:: arc_mobility.BrownianArcMobilityModel Module Contents --------------- .. py:class:: BrownianArcMobilityModel Bases: :py:obj:`paroto.core.models.base.EmpiricalModel` Arc reignition point mobility model based on Brownian motion (Medium Fidelity). .. warning:: Equations are AI generated, not ready for production. Models the arc attachment point movement as Brownian motion at a characteristic velocity in a plane, projected onto the horizontal electrode surface line. This affects: - Reignition probability (moving arc seeks new ionization paths) - Thermal loading distribution on electrodes - Arc stability characteristics The model assumes random walk with characteristic velocity v_brownian in 2D, then projects the displacement onto the 1D electrode surface. Physical basis: .. math:: t_{off} = \frac{1}{f_{pulse}} - t_{sustainer} d_{rms} \propto v_{brownian} \sqrt{t_{off}} where the displacement scales with the square root of time (Brownian scaling). .. rubric:: Examples .. minigallery:: paroto.core.models.arc_mobility.BrownianArcMobilityModel :add-heading: Examples using this model For complete examples, see: - Gallery: examples/gallery/plot_mobility_model_example.py - Validation: paroto/validation/validate_mobility.py .. py:method:: initialize() Initialize model options. .. py:method:: setup() Define inputs and outputs. .. py:method:: compute(inputs, outputs) Compute arc mobility characteristics. .. warning:: Equations are AI generated, not ready for production. The arc attachment point displacement follows a Brownian motion model: .. math:: d_{2D} = v_{brownian} \sqrt{t_{off}} d_{1D} = d_{2D} \cdot \frac{1}{\sqrt{2}} d_{rms} = d_{1D} \cdot \sqrt{\frac{I_{ref}}{I_{arc}}} \cdot \left(\frac{T}{T_{ref}}\right)^{0.3} where: - \(d_{2D}\) is the displacement in 2D plane - \(v_{brownian}\) is the characteristic Brownian velocity (10 m/s) - \(t_{off}\) is the time between pulses - \(d_{1D}\) is the projection onto the electrode line - \(I_{ref}\) = 100 A is the reference current - \(T_{ref}\) = 300 K is the reference temperature Mobility and thermal spreading factors: .. math:: \mu_{factor} = 1 + 0.5 \cdot \frac{d_{rms}}{d_{gap}} \theta_{spread} = 1 + 2.0 \cdot \frac{d_{rms}}{d_{gap}} .. py:method:: compute_partials(inputs, partials) Compute partial derivatives.